Type keyword(s) to search

Difference between Conductor Semiconductor and Insulator

Posted on 12 October, 2017 by Diana L. Floyd
82 out of 100 based on 791 user ratings


This article covers the key differences between Conductor, Semiconductor, and InsulatorĀ on the basis of Conductivity, Resistivity, Forbidden Gap, Conduction, Band Structure, Current Flow, Band Overlap, 0 Kelvin Behavior, and Examples. The following table covers the key Differences between Conductor Semiconductor and Insulator.

CharacteristicsConductorSemi-ConductorInsulator
ConductivityHighModerateLow
ResistivityLowModerateVery High
Forbidden gapNo forbidden gapSmall forbidden gapLarge forbidden gap
Temperature coefficientPositiveNegativeNegative
ConductionLarge number of electrons for conductionVery small number of electrons for conductionModerate number of electrons for conduction
Conductivity valueVery high $\text{1}{{\text{0}}^{\text{-7}}}\text{mho/m}$Between those of conductors and insulators i.e. $\text{1}{{\text{0}}^{\text{-7}}}\text{mho/m}$ to $\text{1}{{\text{0}}^{\text{-13}}}\text{mho/m}$Negligible like $\text{1}{{\text{0}}^{\text{-13}}}\text{mho/m}$
Resistivity valueNegligible; less than $\text{1}{{\text{0}}^{\text{-5}}}\text{ }\Omega \text{-m}$Between those of conductors and insulators i.e. $\text{1}{{\text{0}}^{\text{-5}}}\text{ }\Omega \text{-m}$ to $\text{1}{{\text{0}}^{\text{5}}}\text{ }\Omega \text{-m}$Very high; more than $\text{1}{{\text{0}}^{\text{5}}}\text{ }\Omega \text{-m}$
Band structure
Current flowDue to free electronsDue to free electrons and holes more than that in insulatorsDue to free electrons but negligible
Number of current carriers at normal temperatureVery highLowNegligible
Band overlapBoth conduction and valence bands are overlapped.Both bands are separated by an energy gap of 1.1eVBoth bands are separated by an energy gap of 6eV to 10eV
0 Kelvin BehaviorActs like a superconductorActs like an insulatorActs like an insulator
FormationFormed by metallic bondingFormed by covalent bondingFormed by ionic bonding
Valence ElectronsOne valence electron in the outermost shellFour valence electron in the outermost shellEight valence electron inthe outermost shell
ExamplesCopper, mercury, aluminum, silverGermanium, SiliconWood, Rubber, Mica, Paper

Difference between Conductors, Semiconductors, and Insulators on the Basis of Energy Bands

Conductors

In conductive materials, no band gaps exist so electrons move easily using a continuous, partly full conduction band.

Conductor Energy Band

Semiconductors

In semiconductor materials, the band gap between the conduction band and valence band is smaller and at normal temperature (room temperature), there is enough energy accessible to displace a few electrons from the valence band into the conduction band.
As temperature increases, the conductivity of a semiconductor material increases.

Semiconductor Energy Band

Insulator

In insulators, there is a large band gap between the conduction and valence band. The valence band remains full since no movement of electrons occurs and as a result, the conduction band remains empty as well.

Insulator Energy Band

Related Images of  Difference between Conductor Semiconductor and Insulator


Video of  Difference between Conductor Semiconductor and Insulator

Share!

More Images from  Difference between Conductor Semiconductor and Insulator

You May Like Also Chassis Wiring Diagram For The 1955-1957 Chevrolet Corvette